Transposon-mediated insertional mutagenesis revealed the functions of animal cellulose synthase in the ascidian Ciona intestinalis.

نویسندگان

  • Yasunori Sasakura
  • Keisuke Nakashima
  • Satoko Awazu
  • Terumi Matsuoka
  • Akie Nakayama
  • Jun-ichi Azuma
  • Nori Satoh
چکیده

Tunicates are the only animals that perform cellulose biosynthesis. The tunicate gene for cellulose synthase, Ci-CesA, was likely acquired by horizontal transfer from bacteria and was a key innovation in the evolution of tunicates. Transposon-based mutagenesis in an ascidian, Ciona intestinalis, has generated a mutant, swimming juvenile (sj). Ci-CesA is the gene responsible for the sj mutant, in which a drastic reduction in cellulose was observed in the tunic. Furthermore, during metamorphosis, which in ascidians convert the vertebrate-like larva into a sessile filter feeder, sj showed abnormalities in the order of metamorphic events. In normal larvae, the metamorphic events in the trunk region are initiated after tail resorption. In contrast, sj mutant larvae initiated the metamorphic events in the trunk without tail resorption. Thus, sj larvae show a "swimming juvenile" phenotype, the juvenile-like trunk structure with a complete tail and the ability to swim. It is likely that ascidian cellulose synthase is required for the coordination of the metamorphic events in the trunk and tail in addition to cellulose biosynthesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ciona intestinalis and Oxycomanthus japonicus, representatives of marine invertebrates.

The study of marine invertebrates is useful in various biological research fields. However, genetic analyses of these animals are limited, mainly due to difficulties in culturing them, and the genetic resources of marine invertebrates have not been organized. Recently, advances have been made in the study of two deuterostomes, an ascidian Ciona intestinalis and a feather star Oxycomanthus japon...

متن کامل

A functional cellulose synthase from ascidian epidermis.

Among animals, urochordates (e.g., ascidians) are unique in their ability to biosynthesize cellulose. In ascidians cellulose is synthesized in the epidermis and incorporated into a protective coat know as the tunic. A putative cellulose synthase-like gene was first identified in the genome sequences of the ascidian Ciona intestinalis. We describe here a cellulose synthase gene from the ascidian...

متن کامل

CRISPR/Cas9-mediated gene knockout in the ascidian Ciona intestinalis

Knockout of genes with CRISPR/Cas9 is a newly emerged approach to investigate functions of genes in various organisms. We demonstrate that CRISPR/Cas9 can mutate endogenous genes of the ascidian Ciona intestinalis, a splendid model for elucidating molecular mechanisms for constructing the chordate body plan. Short guide RNA (sgRNA) and Cas9 mRNA, when they are expressed in Ciona embryos by mean...

متن کامل

Transposon-mediated targeted and specific knockdown of maternally expressed transcripts in the ascidian Ciona intestinalis

Maternal mRNAs play crucial roles during early embryogenesis of ascidians, but their functions are largely unknown. In this study, we developed a new method to specifically knockdown maternal mRNAs in Ciona intestinalis using transposon-mediated transgenesis. We found that GFP expression is epigenetically silenced in Ciona intestinalis oocytes and eggs, and this epigenetic silencing of GFP was ...

متن کامل

Expression of hedgehog genes in Ciona intestinalis embryos

The configuration of the ascidian tadpole larva represents the most simplified and primitive chordate body plan. The present study revealed that Ciona intestinalis contains two hedgehog genes (Ci-hh1 and Ci-hh2), which are likely to be independent duplicate genes in this animal and ancestral to the three types of hedgehog gene of vertebrates. Ci-hh1 was expressed maternally and its maternal tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 102 42  شماره 

صفحات  -

تاریخ انتشار 2005